MATHEMATICAL MODEL AND ARTIFICIAL INTELLIGENCE ALGORITHM IN DRIP IRRIGATION UDC 631.004.896

FULL TEXT:

Abstract

Artificial Intelligence (AI) is transforming agriculture, integrating into efficient irrigation systems and offering solutions for optimizing water usage, forecasting its demand, monitoring irrigation systems, analyzing plant data, and managing fertilizers. AI technologies analyze a multitude of variables such as soil condition, climatic conditions, and plant characteristics to optimize irrigation processes and facilitate the efficient distribution of resources. This direction is relevant for improving crop yield and the quality of agricultural products, while minimizing costs and environmental impact.
In this section, the development of a mathematical model for optimizing the drip irrigation process is described, taking into account the complex interactions between water, soil, plants, and climatic conditions. The use of Navier-Stokes equations, which describe the motion of fluids, and numerical methods, such as the finite element method, ensures the modeling and optimization of water flow. The optimization process involves several steps: from system modeling and parameter determination to the application of optimization methods for finding optimal solutions. It is necessary to emphasize the complexity of the irrigation optimization task and the importance of considering a multitude of variables, including practical aspects of drip irrigation, such as the placement of drippers and soil types.
As a result of the research, an algorithm for solving the Navier-Stokes equation was developed in combination with additional equations that take into account the behavior of droplets (for example, equations of droplet motion in a velocity field). This model allows describing the distribution of droplets in space and time, their interaction with the environment and other droplets, as well as the overall behavior of the liquid during irrigation.
Issues related to the development of a mathematical model and an artificial intelligence algorithm for drip irrigation systems have been studied. The Navier-Stokes equation was used as a mathematical model for simulating processes in the irrigation system. Keywords. Artificial intelligence, drip irrigation, Navier-Stokes equation, mathematical model, Python programming, control algorithm.
Keywords: Artificial Intelligence,

About the Authors

List of references

Камышова, Г.Н. моделирование нейропрогнозирующего управления дождевальными машинами = modeling of neural predictive control of irrigation machines / . — с.14- 22. — Электрон. текстовые дан. // Природообустройство / Prirodoobustrojstvo. – 2021. – Вып.

Коллекция: Журнал Природообустройство». http://elib.timacad.ru/dl/full/gmgup-02- 2021-1.pdf .

Ковеня В.М. Разностные методы решения многомерных задач: Курс лекций. Новосибирск: Изд-во Новосиб. гос. ун-та, 2004. 146 с.

Роуч П. Вычислительная гидродинамика. – М.: Мир, 1980 – 616 с.

Самарский А.А. Теория разностных схем. – М: Наука, 1977 – 656 с.

Абдуллаев Х.Ф., Абдуллаев М. Капельное орошение и его технологические элементы // Современные научные исследования и инновации. 2021. № 8 [Электронный ресурс]. URL: https://web.snauka.ru/issues/2021/08/96362.

Рахимбаев Ф.М., Шукурлаев Х.И. Методические указания по проектированию системы капельного орошения., Ташкент, 1999г.

Уравнение Навье – Стокса и симуляция жидкостей. [Электронный ресурс] CUDA/Хабр. URL: https://habr.com/ru/post/470742

[Электронный ресурс] URL: http://www.mpei.ru/Science/Dissertations /dissertations/ Dissertations/SavinAA_diss.pdf#1

Suv xo‘jaligi masalalarini Python dasturlash tilida yechish. Monografiya. “TIQXMMI” MTU Qarshi irrigatsiya va agrotexnologiyalar instituti. Q.2023. 122 -bet. Globe Edit nashriyoti.

How to Cite

Turgunov, A. M. (2024). MATHEMATICAL MODEL AND ARTIFICIAL INTELLIGENCE ALGORITHM IN DRIP IRRIGATION: UDC 631.004.896. INNOVATIVE TECHNOLOGIES, 53(1), 53–60. Retrieved from https://innotex-journal.uz/index.php/journal/article/view/74
Views: 0