WATER HAMMER WHEN STARTING A PUMPING STATION

FULL TEXT:

Abstract

The work is devoted to the study of water hammer during the start-up of pumps in automated stations with low inertia of moving masses and taking into account energy losses during filling of the pressure pipeline.


The article presents an analysis of works devoted to the study of shock pressure during the start-up of pumping stations.


The paper presents a theoretical study of the maximum impact pressure during the start-up of pumping stations, which provides an accurate assessment of the optimal technical parameters of pumping stations and their main structures.


The paper presents a formula for calculating the maximum impact pressure when starting pumping stations, taking into account energy loss along the length of the pressure pipeline. It increases the reliability of the pressure system and ensures resource conservation in the design of pumping stations and their structures.


A graphical analytical method is proposed for determining the maximum impact pressure when starting a pump with an open valve installed at the beginning of a pressure pipeline.


The analytical results were compared with experimental data on water hammer during start-up of the main pumps at the stations. Reliable agreement was achieved between the results of pressure pipeline calculations using the proposed water hammer dependence and the experimental data.

About the Authors

List of references

Жуковский Н. Е. О гидравлическом ударе в водопроводных трубах. М.-Л., Гос.изд.во техн.-теорет. лит-ры, 1949.-104 с.

Allievi L. Thëorie du coup de bëlfer. Paris, Dunod, 1921, 210 p.

Мостков М.А., Башкиров А.А. Расчеты гидравлического удара. Госэнергоиздат, М.-Л., 1952. -200 с.

Сурин А.А. Гидравлический удар в водопроводах и борьба с ним. – М. – Л., Трансжелдориздат, 1946. – 371 с.

Мошнин Л.Ф., Тимофеева Е.Т. Указания по защите водоводов от гидравлического удара. – М., Стройиздат, 1961, - 227 с.

Чарный И.А. Неустановившееся движение реальной жидкости в трубах. – М., Недра, 1975. – 296 с.

Alberto J., Conejero, Lizama C., Rodenas F. Dynamics of the solutions of the water hammer equations [J]. Journal of Topology and its Applications, 2016, (203): 67–83.

A. Arifjanov, U. Jonqobilov, S. Jonqobilov, Sh. Khushiev, J. Xusanova. The influence of hydraulic friction on the maximium pressure of water hammer. ICECAE 2020, IOP Conf. Series: Earth and Environmental Science 614 (2020) 012092, IOP Publishing, doi:10.1088/1755-1315/614/1/012092.

Arifjanov A.M., Jonkobilov U.U., Jonkobilov S.U., Bekjonov R.S. The Hydraulic Impact Wave Propagation Speyed Study in a Two-Phase Flow. International Journal for Innovative Engineering and Management Research Vol 09 Issue11, Nov 2020 ISSN 2456 – 5083 www.ijiemr.orgVolume 09, Issue 11, Pages: 94-100.

Сукач П. Пуск центробежных насосов при откры¬той задвижке. «Водоснабжение и санитарная техника» № 10, 1956, стр.20-24,

Смирнов Д.Н. Пуск насосов при открытой задвижке на напорной линии. «Водоснабжение и санитарная техника» № 2, 1962, с.24-38.

Asli K.H., Naghiyev A.K. Some aspects of physical and numerical modeling of water hammer in pipelines, Nonlinear Dynam. 60 (4) (2010) 677-701.

Bergant, A., Tijsseling, A.S., Vitovsky, J.P., Covas, D.I.C., Simpson., A.R., Lambert, M.F., 2008a. Parameters affecting water hammer wave attenuation, shape and timing. Part 1: Mathematical tools. J. Hydraul. Res. 46 (3), 373–381.

Bertaglia G., Ioriatti , A. Valiani M., Dumbser M., Caleffi V., Numerical methods for hydraulic transients in visco-elastic pipes, J. Fluid Struct. 81(C) (2018) 230–254.

Besharat M., Tarinejad R., Aalami M.T., Ramos H. Study of a compressed air vessel for controlling the pressure surge in water networks: CFD and experimental analysis, Water Resour. Manag. 30 (8) (2016) 2687–2702.

Bojan Ivljanin, Vladimir D. Stevanovic, Aleksandar Gajic. Water hammer with non-equilibrium gas release. - International Journal of Pressure Vessels and Piping, 165 (2018) 229 – 240.

Daude F., Tijsseling A.S., Galon P., Numerical investigations of water-hammer with column-separation induced by vaporous cavitation using a one-dimensional Finite Volume approach, J. Fluid Struct. 83 (2018) 91–118.

Ghidaoui M.S., Zhao M., Duncan A.M., David H.A. A review of water-hammer theory and practice, Appl. Mech. Rev. 58 (2005) 49–76.

Guo L. L., Geng J., Shi S. et al. Computing research of the water hammer pressure in the process of the variable speed closure of valve based on UDF method [J]. Journal of Shandong University (Natural Edition), 2014, 49(3): 27-30.

Henclik S. Numerical modeling of water hammer with fluid-structure interaction in a pipeline with viscoelastic supports, J. Fluids Struct. 76 (2018) 469–487.

Triki A., Further investigation on water-hammer control inline strategy in watersupply systems, J. Water Supply Res. Technol. Aqua 67 (1) (2018) 30–43.

How to Cite

Jonkobilov, S. U. (2026). WATER HAMMER WHEN STARTING A PUMPING STATION. INNOVATIVE TECHNOLOGIES, 60(4), 86–95. https://doi.org/10.70769/2181-4732.ITJ.2025-4.11
Views: 2