COMPREHENSIVE ASSESSMENT OF THE ENERGY EFFICIENCY, PAYBACK PERIOD AND ENVIRONMENTAL IMPACT OF A HYBRID BIOGAS PLANT COMPREHENSIVE ASSESSMENT OF THE ENERGY EFFICIENCY, PAYBACK PERIOD AND ENVIRONMENTAL IMPACT OF A HYBRID BIOGAS PLANT
Abstract
This paper presents the results of a comprehensive evaluation of a small-scale hybrid biogas plant for farms in Uzbekistan. The system under study includes a 0.5 m³ bioreactor, a 2 m² solar collector, and a 0.55 kW photovoltaic panel, providing thermal and electrical energy for the bioreactor with minimal external input.
Performance was evaluated using an energy balance approach accounting for all subsystem efficiencies.
The overall energy efficiency of the plant is about 37% (i.e., roughly one-third of the input renewable energy is converted into useful heat and electricity). The hybrid system can supply up to 96% of its energy needs from renewable sources, demonstrating a high level of energy autonomy. Economic analysis indicates an annual benefit of approximately 1.8 million UZS by replacing grid electricity and natural gas with renewable energy and utilizing the produced biofertilizer. The simple payback period is about 7 years. Environmentally, the plant reduces CO₂ emissions by 2.0 tons per year (roughly 20 tons over 10 years) through the substitution of fossil fuels with biogas and solar energy.
Thus, the hybrid solar-biogas system represents an effective solution for supplying energy to remote farming communities in Uzbekistan. It enables the efficient utilization of livestock waste while simultaneously producing heat, electricity, and valuable biofertilizer, thereby enhancing the energy autonomy and environmental sustainability of the agricultural sector. The obtained results demonstrate the high potential for implementing such small-scale systems in agriculture, contributing to the development of renewable energy and the reduction of the carbon footprint in the region.
About the Authors
List of references
IEA (2022). World Energy Outlook 2022. International Energy Agency.
IPCC (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories.
R. Evins. Multi-objective optimization for building design: a review. Renew. Sust. Energy Rev., 2013, 22, pp.230-245.
S. Sinha, S.S. Chandel. Optimization techniques for hybrid PV–wind systems: A review. Renew. Sust. Energy Rev., 2014, 50, pp.755-769.
M.J. Khan, M.T. Iqbal. Pre-feasibility study of stand-alone hybrid energy systems. Renewable Energy, 2005, 30(6), pp.835-854.
A. Gupta, R.P. Saini. Multi-objective optimization of hybrid renewable energy systems using NSGA-II and MOPSO. Renewable Energy, 2020, 146, pp.1-18.
Н.Р. Авезова, А.Ю. Усманов, М.А. Куралов. Планирование системы теплоснабжения объектов животноводства и обеспечению необходимого микроклимата в них. Проблемы энерго- и ресурсосбережения, 2022, №3, стр. 101-109.
Н.Р. Авезова, А.Ю. Усманов, М.А. Куралов. Конструктивно-технологические и энергетические параметры биогазовой установки для обеспечения системы теплоснабжения и вентиляции на примере объекта коровника // Проблемы энерго- и ресурсосбережения, 2024, №4, стр. 124-131.
Н.Р. Авезова, О.З. Тоиров, А.Ю. Усманов. Обзор современных подходов в разработке гибридных биогазовых систем. Гелиотехника, 2024, Том 60, № 3, cтр. 287-302.
А.Г. Бугаков, Н.Р. Авезова, А.М. Мирзабаев, А.У. Вохидов, А.Ю. Усманов. Солнечно-биогазовая система энергообеспечения биореактора. Патент на полезную модель № FAP 01315 (UZ). Официальный бюллетень Агентства по интеллектуальной собственности РУз. № 8. 2018.
https://glotr.uz/solnechnaya-panel-trinasolar-tsm-550de19-550w-p-848214/
https://flagma.uz/ru/biogumus-organicheskoe-udobrenie-bez-himicheskih-dobavok-o1950833.html
https://sro150.ru/metodiki/371-metodika-rascheta-vybrosov-parnikovykh-gazov
How to Cite

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
