COMBINED HEATING AND COOLING SYSTEMS WITH HEAT PUMPS AND RENEWABLE ENERGY IN UZBEKISTAN: ANALYSIS OF THE REGULATORY FRAMEWORK, A CASE STUDY CALCULATION, AND THE NEED FOR A NEW METHODOLOGY COMBINED HEATING AND COOLING SYSTEMS WITH HEAT PUMPS AND RENEWABLE ENERGY IN UZBEKISTAN: ANALYSIS OF THE REGULATORY FRAMEWORK, A CASE STUDY CALCULATION, AND THE NEED FOR A NEW METHODOLOGY

FULL TEXT:

Abstract

The article is devoted to the analysis and demonstration of approaches to the calculation of combined heating and cooling systems using heat pumps and renewable energy sources (RES) under the conditions of Uzbekistan. Calculation results are presented, and the need for a new methodology that considers regional characteristics is justified. Improving building energy efficiency and implementing renewable energy sources have become priorities in Uzbekistan’s construction policy. However, there is currently no unified regulatory approach for calculating combined heating and cooling systems, especially for residential and passive houses. This creates barriers to the widespread adoption of such solutions.


An inventory of the current regulatory framework (GOST, SP, KMK) was carried out, revealing fragmented and insufficiently integrated regulation. Both international and national calculation methodologies were analyzed, along with their applicability to Uzbekistan's conditions. As an example, a system design for a 100 m² residential house in Tashkent is presented.


The conducted analysis revealed significant limitations of the existing approaches. The presented calculation demonstrates the practical implementation of the proposed solutions and confirms the effectiveness of the integrated approach in designing heating and cooling systems tailored to the region's climatic conditions..


The results emphasize the need to develop a unified methodology for calculating energy-efficient engineering systems adapted to Uzbekistan’s architectural and climatic conditions. This forms the basis for improving the regulatory framework and the practical implementation of modern energy-saving technologies in construction.

About the Authors

List of references

https://ukesr.supergenstorage.org/chapters/uk-energy-system?utm_source

https://www.iea.org/energy-system/buildings

Martinez, S., Michaux, G., Salagnac, P., & Bouvier, J.-L. (2017).Micro-combined heat and power systems (micro-CHP) based on renewable energy sources. Energy Conversion and Management, 154, 262–285. doi:10.1016/j.enconman.2017.10.035

Lin, H., Clavreul, J., Jeandaux, C., Crawley, J., & Butnar, I. (2021). Environmental life cycle assessment of heating systems in the UK: Comparative assessment of hybrid heat pumps vs. condensing gas boilers. Energy and Buildings, 240, 110865. doi:10.1016/j.enbuild.2021.110865.

Mohammad Saffari, David Keogh, Mattia De Rosa, Donal P. Finn, Technical and economic assessment of a hybrid heat pump system as an energy retrofit measure in a residential building, Energy and Buildings, Volume 295, 2023, 113256, ISSN 0378-7788, https://doi.org/10.1016/j.enbuild.2023.113256

Blarke, M. B. (2012). Towards an intermittency-friendly energy system: Comparing electric boilers and heat pumps in distributed cogeneration. Applied Energy, 91(1), 349–365. doi:10.1016/j.apenergy.2011.09.038

Kien Quoc Vo, & Thi Phuong Tuyen Nguyen. (2024). Evaluation of Energy Saving and Environmental Protection Effect of Heat Pump for Heating Make-up water for Industrial Boilers. Journal of Technical Education Science, 19(06), 56–65. https://doi.org/10.54644/jte.2024.1705

Bart Aspeslagh, Stefanie Debaets. (2013) Hybrid heat pumps - saving energy and reducing carbon emissions. The REHVA European HVAC Journal. Federation of European Heating, Ventilation and Air Conditioning Associations. Volume: 50 Issue: 2 March 2013, 20-25. https://www.rehva.eu/rehva-journal/chapter/hybrid-heat-pumps-saving-energy-and-reducing-carbon-emissions?utm_source

Vega, J., & Cuevas, C. (2019).Parallel vs series configurations in combined solar and heat pump systems: a control system analysis. Applied Thermal Engineering, 114650. doi:10.1016/j.applthermaleng.2019.11

Minwoo Lee, Dongchan Lee, Myeong Hyeon Park, Yong Tae Kang, Yongchan Kim, Performance improvement of solar-assisted ground-source heat pumps with parallelly connected heat sources in heating-dominated areas, Energy, Volume 240, 2022, 122807, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2021.122807

A. Badiei, Y. Golizadeh Akhlaghi, X. Zhao, S. Shittu, X. Xiao, J. Li, Y. Fan, G. Li, A chronological review of advances in solar assisted heat pump technology in 21st century, Renewable and Sustainable Energy Reviews, Volume 132, 2020, 110132, ISSN 1364-0321, https://doi.org/10.1016/j.rser.2020.110132

Prakash, K. B., Almeshaal, M., Pasupathi, M. K., Chinnasamy, S., Saravanakumar, S., & Rajesh Ruban, S. (2023). Hybrid PV/T Heat Pump System with PCM for Combined Heating, Cooling and Power Provision in Buildings. Buildings, 13(5), 1133. https://doi.org/10.3390/buildings13051133

M. Tahir Erdinc, Cagri Kutlu, Saban Unal, Orhan Aydin, Yuehong Su, Saffa Riffat, Performance improvement potential of a PV/T integrated dual-source heat pump unit with a pressure booster ejector, Thermal Science and Engineering Progress, Volume 37, 2023, 101534, ISSN 2451-9049, https://doi.org/10.1016/j.tsep.2022.101534

Закон Республики Узбекистан № 539 «Об использовании возобновляемых источников энергии». 21.05.2019 г

Закон Республики Узбекистан № 906 «О внесении дополнений и изменений в некоторые законодательные акты Республики Узбекистан в связи с дальнейшим развитием использования возобновляемых источников энергии»

Постановление Президента Республики Узбекистан от 22 августа 2019 года № ПП-4422 «Об ускоренных мерах по повышению энергоэффективности отраслей экономики и социальной сферы, внедрению энергосберегающих технологий и развитию возобновляемых источников энергии».

Министерство строительства Республики Узбекистан, “ШНК 2.08.08-22. Пассивные здания: жилые”. [Онлайн]. Доступно: https://mc.uz/uploads/mcuz_999401255275.pdf

https://www.energy.gov/eere/buildings/articles/phius-information#:~:text

Приказ министра строительства и жилищно-коммунального хозяйства Республики Узбекистан, от 06.04.2023 г. № 74 «О внесении изменений в пункт 3.10 строительных норм и правил «Отопление, вентиляция и кондиционирование» КМК 2.04.05-97

Directive (eu) 2018/2001 of the european parliament and of the council. 21.12.2018 https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001

СП 525.1325800.2023. Теплонасосные системы теплохладоснабжения. Правила проектирования. – М.: Минстрой России, 2023 meganorm.ru

СП 60.13330.2020 (СНиП 41-01-2003). Отопление, вентиляция и кондиционирование воздуха. – М.: Минстрой России, 2020

СП 50.13330.2012 (СНиП 23-02-2003). Тепловая защита зданий. – М.: Минрегион РФ, 2011

СП 131.13330.2012 (СНиП 23-01-99). Строительная климатология. – М.: Минрегион РФ, 2012.

СП 373.1325800.2018. Источники теплоснабжения автономные. Правила проектирования. – М.: Минстрой России, 2018.

ГОСТ Р 54865-2011. Теплоснабжение зданий. Методика расчета энергопотребности и эффективности системы теплогенерации с тепловыми насосами. – М.: Росстандарт, 2011.

ISO 12831-1:2017. Energy performance of buildings – Method for calculation of the design heat load. – Brussels: CEN, 2017.

Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the energy performance of buildings (recast) iea.org. – Official Journal of the EU, L 153/13.

КМК 2.01.18-2000. Нормы расхода энергии на отопление, вентиляцию и кондиционирование зданий и сооружений. – Ташкент: Госархитектстрой РУз, 2000. ovkv.uz.

КМК 2.01.04-18 Қурилиш иссиқлик техникаси. https://mc.uz/oz/documents/shaharsozlik-normalari-va-qoidalari

Н.Р. Авезова, Н.Н. Далмурадова, Э.Ю. Рахимов, Н.Н. Далмурадова. Динамика изменения температуры наружного воздуха в Узбекистане за последние год. Цели и пути устойчивого экономического развития. Сборник научных статей по материалам VI - Международной научно-практической конференции. 8 октября 2021г.Уфа. с-31-41.

Рахимов Э.Ю. Разработка атласа для оценки потенциала солнечной энергии территории Узбекистан// Труды международной конференции «Фундаментальные и прикладные вопросы физики», 22-23 сентябрь 2020 г., Ташкент, - с. 177-181.

J.A. Duffie, W.A. Beckman, “Solar Engineering of Thermal Processes”, New Jersey, 2013.

Н.Р. Авезова. “Моделирование процессов теплового преобразования солнечной энергии в плоских коллекторах и оптимизация их основных параметров для использования в системах горячего водоснабжения”, автореферат диссертации на соискание ученой степени доктора (DSc) по техническим наукам. ТГТУ. Ташкент. 2018.

Д.У. Абдухамидов. “Выбор, обоснование схемы и тепловая оптимизация параметров низкотемпературных активных систем солнечного отопления”. Автореферат диссертации на соискание ученой степени доктора философии (PhD) по техническим наукам, ФерПИ, Фергана, 2023

Matchanov N.A., Butunbaev B.N, Saidov D.Sh., Bobojonov K.A. Monitoring system for low power photovoltaic stations. Applied Solar Energy, 2020, vol.56, no 1, pp.464-469.

Rakhimov, E.Y., Avezova, N.R., Emamgholizadeh, S. et al. Assessment of the Technical Potential of PV Stations on the Example of the Fergana Valley. Part II: Analysis of Sunny, Partly Cloudy and Cloudy Days. Appl. Sol. Energy 60, 346–356 (2024). https://doi.org/10.3103/S0003701X24602199.

How to Cite

Авезова , Н. Р., Sharipov, K. A., Salomov, U. R., Kuchkarbayev , R. U., & Shermatova, M. B. (2025). COMBINED HEATING AND COOLING SYSTEMS WITH HEAT PUMPS AND RENEWABLE ENERGY IN UZBEKISTAN: ANALYSIS OF THE REGULATORY FRAMEWORK, A CASE STUDY CALCULATION, AND THE NEED FOR A NEW METHODOLOGY: COMBINED HEATING AND COOLING SYSTEMS WITH HEAT PUMPS AND RENEWABLE ENERGY IN UZBEKISTAN: ANALYSIS OF THE REGULATORY FRAMEWORK, A CASE STUDY CALCULATION, AND THE NEED FOR A NEW METHODOLOGY. INNOVATIVE TECHNOLOGIES, 58(2), 32–53. Retrieved from https://innotex-journal.uz/index.php/journal/article/view/162
Views: 2