O‘ZBEKISTON RESPUBLIKASI HUDUDIDA QUYOSH ENERGIYASIDAN FOYDALANIB TERMOKIMYOVIY USULDA VODOROD OLISHNING ENERGETIK VA EKOLOGIK TAHLILI UO‘K: 66.011: 502.174.3: 620.97(075.8)
Referat
Qayta tiklanadigan energiya manbalariga global o‘tishda toza energiya tashuvchisi sifatida vodorod katta qiziqish uyg‘otmoqda. O‘zbekiston o‘zining yuqori quyosh nurlanishi bilan ajralib turadi shu sababli quyosh energiyasidan vodorod ishlab chiqarishda keng imkoniyatini taqdim etadi. Ushbu tadqiqot O‘zbekistonda termokimyoviy usul orqali quyosh energiyasidan vodorod ishlab chiqarishning viloyatlar kesimida energetik hamda ekalogik tahlili olib borilgan.
Ushbu ilmiy ishda barcha hududlar tanlab olindi, ularning quyosh energiyasi salohiyati o‘rganib chiqildi. Quyosh energiyasi orqali vodorod ishlab chiqarish usullari tahlil qilindi va eng avfzali ikki bosqichli metal oksid asosli usul tanlandi. Termokimyoviy usulda vodorod olishda sarflanadigan energiya aniqlandi va quyosh energiyasiga nisbatan ishlab chiqariladigan vodorod miqdori aniqlandi.
O‘zbekistonning turli hududlari uchun quyidagi vodorod ishlab chiqarish miqdorlari aniqlandi. Masalan Termizda eng ko‘p 10766 tonna va Toshkent shahrida eng kam 10119 tonna ishlab chiqarish potensiali aniqlandi. Umumiy qilib olgan qolgan hududlar shu qiymatlar orasida. Shunga asoslangan holda jami 135334 tonna ishlab chiqarilgan vodorod 2706,68 GW elektr energiyasi va 216,54 Mm3 tabiiy gazni o‘rnini bosishi mumkin.
Mualliflar haqida
Adabiyotlar ro'yxati
O. Edenhofer et al., Renewable energy sources and climate change mitigation: Special report of the intergovernmental panel on climate change. 2011. doi: 10.1017/CBO9781139151153.
Marouani et al., ‘Integration of Renewable-Energy-Based Green Hydrogen into the Energy Future’, Processes, vol. 11, no. 9, 2023, doi: 10.3390/pr11092685.
C. Chen, Q. Xia, S. Feng, and Q. Liu, ‘A novel solar hydrogen production system integrating high temperature electrolysis with ammonia based thermochemical energy storage’, Energy Convers. Manag., vol. 237, no. February, p. 114143, 2021, doi: 10.1016/j.enconman.2021.114143.
J. H. Kim, D. Hansora, P. Sharma, J. W. Jang, and J. S. Lee, ‘Toward practical solar hydrogen production-an artificial photosynthetic leaf-to-farm challenge’, Chem. Soc. Rev., vol. 48, no. 7, pp. 1908–1971, 2019, doi: 10.1039/c8cs00699g.
S. Abanades, P. Charvin, F. Lemont, and G. Flamant, ‘Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen’, Int. J. Hydrogen Energy, vol. 33, no. 21, pp. 6021–6030, 2008, doi: 10.1016/j.ijhydene.2008.05.042.
Https://www.iea.org/reports/solar-energy-policy-in-uzbekistan-a-roadmap/context-of-renewable-energy-in-uzbekistan
J. S. Akhatov and K. S. Ahmadov, ‘Extraction of Hydrogen from Water Using CeO2 in a Solar Reactor Using a Concentrated Flux of Solar Radiation’, Appl. Sol. Energy (English Transl. Geliotekhnika), vol. 58, no. 6, 2022, doi: 10.3103/S0003701X22060032.
Q. Hassan, S. Algburi, A. Z. Sameen, H. M. Salman, and M. Jaszczur, ‘Green hydrogen: A pathway to a sustainable energy future’, Int. J. Hydrogen Energy, vol. 50, no. 0360–3199, pp. 310–333, 2024, doi: 10.1016/J.IJHYDENE.2023.08.321.
Https://solargis.com/maps-and-gis-data/download/uzbekistan, ‘No Title’.
N. R. Avezova, E. Yu Rakhimov, N. N. Dalmuradova, and M. B. Shermatova, Adjustments to the indicators of the heating and cooling degree-days for regions of the Republic of Uzbekistan’, IOP Conf. Ser. Earth Environ. Sci., vol. 939, no. 1, 2021
S. Abanades and G. Flamant, ‘Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides’, Sol. Energy, vol. 80, no. 12, pp. 1611–1623, Dec. 2006, doi: 10.1016/j.solener.2005.12.005.
Dincer, ‘Green methods for hydrogen production’, Int. J. Hydrogen Energy, vol. 37, no. 2, pp. 1954–1971, 2012, doi: 10.1016/j.ijhydene.2011.03.173.