REAL VAQT REJIMIDA KUCH TRANSFORMATORLARINING TEXNIK HOLATINI BAHOLASH UCHUN INTELLEKTUAL IoT-ASOSLANGAN PLATFORMА
Referat
Maqolada kuch transformatorlarining uzluksiz va ishonchli ishlashini ta’minlashga xizmat qiluvchi usul ko‘rib chiqilgan bo‘lib, bu zamonaviy elektr tarmoqlari uchun muhim talablardan biridir. Energetik tizimlarning tobora murakkablashib borishi real vaqt rejimida monitoring olib borish va prediktiv texnik xizmat ko‘rsatishning innovatsion usullarini joriy etishni taqozo etadi. Ushbu ishda Internet buyumlari (IoT) texnologiyalariga asoslangan, transformatorlarning texnik holatini baholashga mo‘ljallangan intellektual tizim taklif etilgan bo‘lib, u ko‘p kanalli datchiklardan ma’lumotlarni yig‘ish, simsiz uzatish hamda mashinali o‘rganish algoritmlaridan foydalangan holda bulutli analitik qayta ishlashni birlashtiradi.
Taklif etilgan model o‘ramlar harorati, transformator moyining sifati va vibratsiya darajasi kabi muhim parametrlarni monitoring qilishni amalga oshiradi. Ma’lumotlar sun’iy neyron tarmoqlar (ANN) va tayanch vektorlar usuli (SVM) yordamida tahlil qilinib, transformatorning texnik holat indeksi dinamik ravishda aniqlanadi. Statistik korrelyatsion tahlil harorat tebranishlari, moyning kislotaliligi va izolyatsiyaning degradatsiya jarayonlari o‘rtasida yaqqol bog‘liqlik mavjudligini ko‘rsatdi. 110/35 kV podstansiyalaridan real vaqt rejimida olingan ma’lumotlar asosida o‘tkazilgan tajribaviy sinovlar modelning bashorat aniqligi 97,5 % ni tashkil etishini tasdiqladi.
IoT-ga yo‘naltirilgan analitikani SCADA muhitlariga integratsiya qilish prediktiv texnik xizmat ko‘rsatishga o‘tishni ta’minlaydi, ekspluatatsion xatarlarni kamaytiradi va uskunaning xizmat muddatini uzaytiradi. Olingan natijalar an’anaviy texnik xizmat strategiyalaridan intellektual, o‘z-o‘zini diagnostika qiluvchi energetik tizimlarga o‘tishning amaliy jihatdan mumkinligini tasdiqlaydi.
Mualliflar haqida
Adabiyotlar ro'yxati
Zhou, H., Zhang, Y., & Li, P. (2021). Smart IoT Applications in Transformer Condition Monitoring. IEEE Access, 9, 124557–124568.
Kumar, V., & Singh, R. (2022). Artificial Intelligence for Predictive Transformer Maintenance. Electric Power Systems Research, 208, 107864.
Gupta, A. (2023). Statistical Modelling of Transformer Health in IoT-Integrated Networks. Energies, 16(4), 1442.
Patel, R., Desai, M., & Khan, S. (2021). IoT-Enabled SCADA Systems for Smart Substations. IEEE Transactions on Industrial Informatics, 17(9), 6045–6057.
Aliyev, F., & Yusupov, D. (2024). Real-Time Transformer Monitoring Using Edge Computing. Sensors, 24(1), 52–66.
Li, J., Wang, X., & Zhang, Y. (2023). Intelligent condition monitoring of power transformers using IoT-enabled sensors and machine learning models. IEEE Transactions on Industrial Informatics, 19(8), 6543–6555. https://doi.org/10.1109/TII.2023.3248761
Sharma, P., & Singh, R. (2022). Integration of IoT and SCADA for real-time monitoring and fault diagnosis in electrical substations. Electric Power Systems Research, 212, 108389. https://doi.org/10.1016/j.epsr.2022.108389
Kumar, S., & Khan, M. A. (2021). A hybrid AI model for transformer health prediction based on ANN and SVM classifiers. Energy Reports, 7, 876–884. https://doi.org/10.1016/j.egyr.2021.01.039
Bakar, A., Mohamad, H., & Yusuf, M. (2023). Internet of Things-based monitoring architecture for oil-immersed transformers. Sensors, 23(5), 2541. https://doi.org/10.3390/s23052541
Tabrizi, M., & Gholami, M. (2022). Condition assessment of power transformers using health index and fuzzy inference systems. IEEE Access, 10, 100234–100245. https://doi.org/10.1109/ACCESS.2022.3204523
Rahman, M. A., & Islam, S. (2021). Machine learning and deep learning approaches for transformer fault diagnosis: A comparative study. Energies, 14(17), 5329. https://doi.org/10.3390/en14175329
Ahmed, M. F., & Ali, Z. (2023). Thermal modeling and lifetime prediction of power transformers under IoT-based monitoring systems. Applied Energy, 337, 120929. https://doi.org/10.1016/j.apenergy.2023.120929
Zhou, H., & Lin, J. (2022). Development of cloud-based predictive maintenance systems for smart grids using IoT data analytics. Renewable and Sustainable Energy Reviews, 169, 113013. https://doi.org/10.1016/j.rser.2022.113013
Raj, A., & Mehta, R. (2023). Smart transformer monitoring through wireless sensor networks and SCADA integration. Measurement, 215, 112889. https://doi.org/10.1016/j.measurement.2023.112889
Chen, D., & Zhao, L. (2024). Reliability estimation of power transformers using real-time IoT data and Bayesian networks. Electric Power Components and Systems, 52(4–5), 312–326. https://doi.org/10.1080/15325008.2024.2331123.

