GIBRID ENERGIYA MANBALARIGA ULANGAN ZARYADLASH STANSIYALARIDA YUKLAMA TAQSIMOTI VA BALANSLASH JARAYONLARINING MATEMATIK TAHLILI
Referat
Tadqiqotda zaryadlash stansiyasining energiya balansi modellashtirildi. Fotovoltaik, shamol va akkumulator quvvatlari tegishli modellar asosida baholandi. Balanslash uchun optimallashtirish usullari qo‘llanilib, hisob-kitoblar MATLAB/Simulink va Python muhitida bajarildi.
Simulyatsiya natijalariga ko‘ra, zaryadlash stansiyasi yuklamasining 45–55% i qayta tiklanuvchi manbalar, 20–30% i akkumulator orqali ta’minlandi, qolgan qismi esa markaziy tarmoqdan olindi. Gibrid strategiya yo‘qotishlarni kamaytirib, samaradorlikni 78 % gacha oshirdi va cho‘qqi yuklama davrida tarmoq bosimini pasaytirdi.
Tadqiqot natijalari gibrid energiya asosidagi zaryadlash stansiyalari texnik barqarorlikni ta’minlab, tarmoq yuklamasini kamaytirishi va samaradorlikni oshirishini ko‘rsatdi. Taklif etilgan model real loyihalarda qo‘llanishi mumkin.
Mualliflar haqida
Adabiyotlar ro'yxati
Mwasilu, F., Justo, J. J., Kim, E. K., Do, T. D., & Jung, J. W. (2014). Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration. Renewable and Sustainable Energy Reviews, 34, 501–516. Elsevier. https://doi.org/10.1016/j.rser.2014.03.031
Lund, H., Ostergaard, P. A., Connolly, D., & Mathiesen, B. V. (2017). Smart energy and smart energy systems. Energy, 137, 556–565. Elsevier. https://doi.org/10.1016/j.energy.2017.05.123
Yilmaz, M., & Krein, P. T. (2013). Review of charging power levels and infrastructure for plug-in electric and hybrid vehicles. IEEE International Electric Vehicle Conference (IEVC), 1–8. IEEE. https://doi.org/10.1109/IEVC.2013.6799610
Nykamp, S., Pruckner, M., & Heuvelink, E. (2019). Integration of electric vehicle charging stations into energy systems with renewable energy sources. Applied Energy, 254, 113600. Elsevier. https://doi.org/10.1016/j.apenergy.2019.113600
Bahrami, S., Wong, V. W. S., & Jatskevich, J. (2019). Demand response for smart charging of electric vehicles in smart grids. IEEE Transactions on Smart Grid, 10(3), 2829–2839. https://doi.org/10.1109/TSG.2018.2887299
Li, R., Su, H., & Wang, H. (2020). Optimal scheduling of renewable energy integrated EV charging stations considering demand response. Journal of Cleaner Production, 256, 120389. Elsevier. https://doi.org/10.1016/j.jclepro.2020.120389
González, J. M., Rivas, E., & Aguado, J. A. (2018). Energy management of microgrids with electric vehicles and renewable sources: A literature review. Renewable Energy, 123, 282–294. Elsevier. https://doi.org/10.1016/j.renene.2018.02.003
Zhou, Y., Wu, Y., & Xu, W. (2018). Stochastic modeling and optimization of EV charging load in renewable energy integrated microgrids. IEEE Transactions on Sustainable Energy, 9(3), 1071–1081. https://doi.org/10.1109/TSTE.2017.2762364
Chen, X., Liu, J., & Song, Y. (2018). Energy management of hybrid renewable energy systems for EV charging stations: A comprehensive review. Energy Conversion and Management, 171, 1247–1268. Elsevier. https://doi.org/10.1016/j.enconman.2018.06.051
Khalid, M., & Savkin, A. V. (2016). Optimal control of fast charging stations for electric vehicles under renewable energy generation and grid power constraints. Energy, 113, 1247–1258. Elsevier. https://doi.org/10.1016/j.energy.2016.07.065

