UO‘K 004.85(075.8) REAL VAQTDA YUZNI TANISH ANIQLIGI VA QAYTA QILISH TEZLIGINI OSHIRISH UCHUN NON-MAXIMUM SUPRESSION ALGORITMMINDAN FOYDALANISH

TO'LIQ MATN:

Referat

Ushbu maqolada an’anaviy ravishda geometrik va shablon usullariga bo‘lingan zamonaviy yuzni aniqlash algoritmlari muhokama qilinadi. Shablon usullari SVM, PCA, LDA va konvolyutsion neyron tarmoqlar kabi statistik yondashuvlardan foydalanadi. Aniqlash darajasi yuqori bo‘lgan Viola-Jones algoritmiga va aniq tanib olishni ta’minlaydigan LBPH usuliga alohida e’tibor beriladi. Shuningdek, ortiqcha yoki bir-biriga o‘xshash bashoratlarni bartaraf etish uchun obyektni aniqlash muammolarida qo‘llaniladigan Non-maximum supression (NMS) algoritmi batafsil tahlil qilinadi. Matematik formulalar va algoritmni bosqichma-bosqich amalga oshirish, jumladan, maydon, kesishish va o‘zaro bog‘liqlik koeffitsientini hisoblash taqdim etiladi. NMS cheklovchi ramkalarning yakuniy tanlovini optimallashtiradi va kompyuter ko‘rish tizimlarida keng qo‘llaniladi.

Mualliflar haqida

Adabiyotlar ro'yxati

MA Imran, MSU Miah, H Rahman , A Bhowmik, D Karmaker, 2015. Face Recognition Using Eigenfaces. International Journal of Computer Applications, vol. 118, no. 5

Dr. H S Prasantha. Detailed Survey Of Machine Learning Algorithms For Face Recognition. International Journal of Creative Research Thoughts (IJCRT). Volume 11, Issue 11 November 2023. 832-836 p.

Jan Hosang, Rodrigo Benenson, Bernt Schiele. Learning non-maximum suppression. Max Planck Institut für Informatik Saarbrücken, Germany.

Krishna, M., & Jawahar, C. V. (2021). Deep Learning for Drone and UAV Applications. In S. S. H. De Silva & B. B. Gupta (Eds.), Handbook of Smart Materials, Technologies, and Devices (pp. 75–93). Springer, Cham.

Xiyue Wang, Xinsheng Wang, Zhiquan Zhou, Yanhong Song. Fast Detection and Obstacle Avoidance on UAVs Using Lightweight Convolutional Neural Network Based on the Fusion of Radar and Camera. Applied Intelligence, August 2024

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., & Dai, J. (2020). Deformable DETR: Deformable Transformers for End-to-End Object Detection.

Yanan Song, Quan-Ke- Pan , Liang Gao, Biao Zong (2019) Improved non-maximum suppression for object detection using harmony search algorithm

A review of non-maximum suppression algorithms for deep learning object detection, M. Gong, SPIE Proceedings, Vol. 11763, 2021

NMS Loss: Learning with Non Maximum Suppression for Crowded Pedestrian Detection (Luo Z. , 2021)

Multi Attribute NMS: An Enhanced Non-Maximum Suppression Algorithm for Pedestrian Detection in Crowded Scenes (Wang W. ., 2023)

Accelerating Non Maximum Suppression: A Graph Theory Approach (Si K.S. 2024)

Qanday qilib iqtibos keltirish mumkin

Davronov, hohjaxon R. oʻgʻli, & Boboqulov, S. R. (2025). UO‘K 004.85(075.8): REAL VAQTDA YUZNI TANISH ANIQLIGI VA QAYTA QILISH TEZLIGINI OSHIRISH UCHUN NON-MAXIMUM SUPRESSION ALGORITMMINDAN FOYDALANISH. INNOVATSION TEXNOLOGIYALAR, 59(3), 111–115. Retrieved from https://innotex-journal.uz/index.php/journal/article/view/192
Ko'rishlar soni: 0